Szolgáltató adatai Help Sales ÁSZF Panaszkezelés DSA

Titokzatos bordásmedúzák

A bordás- (vagy fésűs) medúzákat, vagyis a Ctenophora törzs képviselőit, mint azt a nevük is mutatja, hosszabb ideje többé kevésbé a medúza- és polipéletformával egyaránt rendelkező csalánozókkal (Cnidaria) vették egy kalap alá.

Pedig a hasonlóság tényleg leginkább csak felületetes: mindkét csoport tagjait áttetsző, látszólag körkörös szimmetriájú test jellemzi, na és a standard három csíralemezből is csak kettő (endo- és ectoderma) lelhető fel minden kétséget kizárólag. A kulcsjegynek számító csalánsejtek (amiről a csalánozók a nevüket is kapták) viszont a bordásmedúzákból hiányoznak, helyettük ragadós, ún. colloblaszt sejtekkel ragadják meg mikroszkópikus prédáikat.

Mivel a ctenophorák testében valódi izmok is felfedezhetőek (ami miatt jópár kutató szerint valójában itt kialakul a harmadik csíralemez, a mezoderma is, amelyből a legtöbb "felsőbbrendű" állatban az izmok származnak), sokak hajlamosak (voltak) a kétoldali szimmetriával rendelkező állatokhoz (Bilateria) közelebb sorolni őket. Ezzel viszont az legnagyobb probléma, hogy már a korai - és hiányos - molekuláris rendszerezési adatok sem támasztották alá.

Szóval ilyen és ehhez hasonló vitatottabb rendszertani problémák megoldására a közelmúltban néhány kutató nekiült egy minden eddiginél részletesebb rendszertani fát gründoljon genomi DNS szekvenciák alapján (klikk az alábbi ábrára). Huszonegy állattörzs képviselőit vették górcső alá (ebből tizenegy (!!) eddig nem szerepelt ilyen típusú vizsgálatban), és masszív, majd negyven megabázisnyi szekvenciát használtak. Az eredmények sok szempontból érdekesek, bár legtöbb esetben ma már nem teljesen váratlanok. Egyrészt igazolást nyert, hogy a klasszikus testüreg kialakulása szerinti felosztás (Acoelomata, Pseudocoelomata, Eucoelomata) teljesen tarthatatlan. Helyette a leendő végbélnyílás eredete szerint megkülönböztethetünk ó- és újszájú állatokat (Protostomia és Deuterostomia), illetve előbbiek közt az igazán nagy különbség a lárvák típusa szerint van. Létezik az ún. Ecdysozoa csoport, amelybe az életük során vedlő fajok, pl. rovarok, rákok, pókok tartoznak, és a Lophotrochozoa csoport, amelybe mindefajta férgek és puhatestűek (csigák, oktopuszok, kagylók) esnek.

Bizonyossá vált továbbá az is, hogy a korábbi morfológiai bélyegeken alapuló fákkal ellentétben, az előgerinchúrosok közelebbi (bár sokban módosult) rokonai a gerinceseknek, mint a fejgerinchúrosok.

A legérdekesebb eredmény (értelemszerűen ;-)) a bordásmedúzákhoz kapcsolódik: az új fa szerint ezek még a szivacsoknál is távolabbi unokatestvérei minden más állatnak! Ha ez valóban így van (és még néhány megabázisnyi szekvencia, plusz négy-öt újabb faj vizsgálata ezt hamarosan eldöntheti), az jópár fogas kérdést vet fel, hiszen a bordásmedúzák testfelépítése komplexebb, mint a szivacsoké, amelyekből valódi szövetek is hiányoznak. Lehetséges, hogy a szivacsok "primitívsége" ugyanúgy másodlagos redukció eredménye, mint a parazita férgeké? Vagy a bordásmedúzák a többi állattól némileg függetlenül hozták létre a saját testfelépítésüket? (Vagy, és azért még ne zárjuk ki, a ctenophorák genetikai anyaga gyors evolúción ment át és ez becsapta az ilyesmire egyébként ma már felkészített, filogenetikai fakészítő algoritmusokat?) Pontosabb képet csak úgy nyerhetünk, ha jobban megismerjük ezeknek a különleges lényeknek a biológiáját, így koránt sem lennék meglepődve, ha a következő hónapokban jópár labor sok energiát fektetne a bordásmedúzák fejlődési nüanszainak feltárásába.

(A bordásmedúza fényképe a JelliesZone-ról származik.)


Martindale MQ, Henry JQ. (1999) Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev Biol 214(2): 243-257.
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, et al. (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452: 745-749.
1 Tovább

Kilábalás

Hagyományainkhoz híven (hiszen legelső posztunk már erről szólt ;-)), természetesen felcsillanó szemmel vetjük magunkat a lábbal is rendelkező kígyó fosszíliákról szóló hírekre. Ugyanakkor azért kötelességtudóan megjegyezném, hogy a BBC révén tegnap szájrakapott Eupodophis descouensi azért nem éppen egy friss lelemény, így a hype csöppet túlzó.

Az igazi újdonság a "megszinkrotonozott", eddig láthatatlan másik láb (amelyik a mészkőben van még mindig - ez látható a bal oldalt alul), ahol szintén remekül látszanak a különböző "klasszikus" végtagcsontok. Ezek kicsit már satnyábbak, mint pl. a Najash rionegrina hasonló csontjai, de ettől függetlenül még könnyen felismerhetőek.

A kígyók "lábatlansága" éppúgy egy hosszú folyamat eredménye, mint a lábatlan gyíkok kialakulása, így mindig érdekes, ha egy-egy maradvány révén rekonstruálhatjuk a folyamat állomásait. Arról nem is beszélve, hogy borítékolhatóan "kisebb" bosszúságot okoz a kreacionista tábornak...  

(Egyébként a grenoblei szinkrotont már korábban is használták fosszíliák "röntgenezésére", mindig látványos eredménnyel.)   

3 Tovább

Létezik-e valóban "sztázis"?

Ha, túllépve a kreacionista álkifogásokon, valódi, tudományos vitára vagyunk kíváncsiak evolucionista berkekben, aligha találhatnánk fontosabbat, mint a "gradualizmus" és a "pontozott egyensúly" hívei közt zajlót.

A két nézet közül előbbi a prominensebb és évtizedeken át egyeduralkodónak számított. Röviden, a klasszikus Darwini nézeteknek megfelelően, azt mondja ki, hogy az élővilágban a változások folyamatosan jelennek meg, és a változások felhalmozódása fokozatosan új fajok kialakulásához vezet.

A rivális elmélet Niles Eldredge (az American Museum of Natural History egyik jelenlegi kurátora) doktori téziséből született és Eldredge mellett a másik nagy propagálója kollegája, Stephen Jay Gould volt. Eldredge trilobita fosszíliák tanulmányozása közben arra figyelt fel, hogy ezek a fajok kinézetre több tízezer-, akár egy millió éven keresztül semmit sem változnak, majd hirtelen alakulnak át új fajokká. Gouldék a változatlan időszakot "sztázisnak" nevezték el, és amelett érveltek, hogy az evolúció nem az összes populációban bekövetkező, folyamatos változásban nyilvánul meg, hanem izolált közösségekben történő, (viszonylag) gyors váltásokban.

A vitának tengernyi irodalma van, de itt két kérdésre szűkíteném le a dolgot: létezik-e valóban sztázis, ill. a két elmélet valóban kizárja-e egymást?

Sztázis alatt a pontozott egyensúly hívei pangást, változatlanságot értenek, de nem akármilyen értelemben, hanem konkrétan morfológiai szempontból. (Mást nehezen lehet egy-egy trilbota fosszíliában tanulmányozni, így ez nem is meglepő.) Mivel a genetikai és morfológiai változások gyakran kéz a kézben járnak, ebből könnyedén következtethetnénk arra, hogy akkor ez azt is jelenti, hogy a sztázisban levő fajok örökítőanyaga sem nagyon változik. És nagyot hibáznánk.

Egy "élő fosszílián" végzett genetikai vizsgálat - ha igaznak bizonyul - ezt a logikát ugyanis tételesen cáfolja meg.

Az Új Zélandon élő tuatara, vagy hidasgyík, a hüllők egyik különös rendjének egyetlen ma is élő képviselője. Amennyire a fosszíliák alapján meg lehet ítélni, külalakra nem sokat változott az elmúlt évmilliók során, így aztán persze egész jó kis tanulmányi alanya lehet evolúciós kutatásoknak. Harminchárom ősi és negyvenegy jelenleg is élő tuatara mitokondriális DNS-t összevetve a kutatók arra a meglepő következtetésre jutottak, hogy a genetikai változások sokkal gyakoribbak ezekben a gyíkokban, mint pl. a legtöbb ma élő emlősfajban (amelyek közül sok, kifejezetten szembetűnő változáson ment át az utóbbi évmilliók során). Nyilván lehet, hogy egyszerűen az ősi DNS degradálódott annyira, hogy ma már csak sok hibával lehet rekonstruálni, de a kutatók mindeféle statisztikai ellenőrzésekkel (plusz a nagy mintaszámmal) védekeztek ez ellen, és a különbség elég nagy ahhoz, hogy ha néhány hibán nem is akadt meg a szemük, valósnak tűnjön.

Márpedig ha így van, az erősen abba az irányba mutatna, hogy a morfológiai sztázis nem zárja ki a genetikai gradualizmust, sőt. Elképzelhető, hogy azért észlelhetünk gyors morfológiai átmeneteket időnkéntaz evolúció során, mert a DNS szintjén, a mutációk már "előkészítették a terepet", hogy egy végső genetikai változás új kinézetet kölcsönözzön hordozójának.

Azt persze hangsúlyoznom kell, hogy még ha így is van, az nem jelenti azt, hogy a gradualizmus abban a formában igaz lenne, hogy a folyamatos változások mindig adott ütemben jelennének meg. Minden valószínűség szerint vannak gyorsabb ill. lassabb változást előidéző körülmények. De hogy tökéletes sztázis is létezne (genetikai értelemben) az erősen megkérdőjelezhető. 


Eldredge N (2008) The Early "Evolution" of "Punctuated Equilibria". Evolution: Education and Outreach 1(2): 107-113. doi: 10.1007/s12052-008-0032-0
Hay JM, Subramanian S, Millar CD, Mohandesan E, Lambert DM (2008) Rapid molecular evolution in a living fossil. Trends Genet 24(3): 106-109.
6 Tovább

Fosszilis gének

Pontosítás végett nem fosszíliákban levő génekről lesz szó (bár az is nagyon érdekes), hanem olyan DNS szakaszokról, amelyek nagyon is hús-vér élőlényekben fordulnak elő. S bár szekvenciájuk, ill. szerkezetük alapján könnyedén azonosítható, hogy ezek milyen gének lennének, a bennük levő, évmilliók alatt felgyülemlett mutációk működésképtelenné tették őket, így (ha naggyon költői akarok lenni) ma már csak önmaguk árnyékaként tengődnek a kromoszómákon. Ezeket a nukleinsav darabokat nevezzük hát "fosszilis"-, vagy egyszerűbben pszeudogéneknek.

Mivel a pszeudogének (talán fölösleges is hangsúlyozni) értelemszerűen egy távoli ősben nagyon is működőképesek voltak, puszta létük egyszerre két fontos dolgot is bizonyít: az élőlények közös leszármazását (hiszen egy "intelligensen tervezett" szervezetbe, minek tennénk működésképtelen génszakaszokat...?), valamint azt, hogy csak azok a DNS szakaszaink mentesek a változástól, amelyek fontosak és megváltozásuk az élőlényt igencsak hátrányosan érintené. Egyébként, "ami elromolhat, az el is romlik".

A fent megfogalmazottak persze azt is jelentik, hogy pszeudogének akkor jöhetnek létre, amikor egy-egy specifikus sejtcsoport/szövet/szerv elveszti a funkcióját. A legjobb példa erre, gondolhatnánk józan paraszti ésszel, a csökevény szervek lennének, de azért a helyzet ennél bonyolultabb. Például kígyók esetében a végtagelvesztést nem kísérte a végtagfejlődésben szereplő gének pszeudogénesedése, hiszen ezek a gének (illetve termékeik) még számtalan más funkcióval rendelkeznek, így nem nélkülözhetőek. Max. a végtagspecifikus szabályozószekvenciáik degenerálódhattak, ami persze a mi sztorink szempontjából közel sem ugyanaz.

Azaz pszeudogének vadászata közben olyan génekre kell leszűkítsük a keresőképünket, amelyek igen specifikusan csak egy-egy funkcióval rendelkeznek, és ez a funkció egyes fajokban megszűnt. Ez nagyon rejtélyesen hangozhat, így inkább gyorsan ugorjunk konkrét példákra.

1.) A sziláscetek legnevezetesebb "része" a szájukban lógó és a plankton kiszűrését végző szila-együttes. Persze nemcsak az a jellegzetes, ami van nekik, hanem az is, ami nincs: ez pedig (a hátsó végtag mellett) egy rendes fogsor. Bár a szilák kialakulása evolúciósan ill. fejlődéstani szempontból még nem teljesen tisztázott (ami nem csoda, hiszen finoman szólva sem triviális szürkebálna embriókat beszerezni...), , a szilásceteket összevetve közeli rokonaikkal, az ámbrás cetekkel, vagy delfinekkel, kézenfekvő azt a következtetést levonni, hogy ez a folyamat "mellesleg" a fogazat elvesztésével járt. Ez persze nem váratlan, hiszen foggal nem lehet kiszűrni a planktont, így aztán elvesztése sem jelenthetett túl nagy veszteséget a sziláscet-ősnek (feltéve, persze, ha már volt szilája...).

Mindenesetre a fogfejlődésben van néhány nagyon specifikus gén, ami csak ebben a folyamatban szerepel, pl a zománc kialakításában is részt vevő enamelin és ameloblasztin. Mint arra nemrég fény derült, mindkét fehérjét kódoló gén (ENAM és AMBN) pszeudogénesedett a szilascetek csoportjában: szekvenciájuk az fellelhető, de a mutációk miatt arról működőképes fehérje már nem jöhet létre. Ezzel szemben, a fogfejlődésen kívül még más funkciókat is betöltő DMT1 gén (dental matrix protein 1) "él" és virul, pont ahogy a felvezetőben vázolt logika diktálná.

2.) A jéghideg antarktiszi vizekben élő különleges jéghalak talán legfurcsább tulajdonsága, hogy fehér a vérük. Mindez annak "köszönhető", hogy nincsenek vörösvérsejtjeik, és szöveteik a környező oxigéndús vizekből beoldódó oxigént használják anyagcsere folyamataikhoz. Így persze a más fajokban a gáz molekulák szállítására szakosodott hemoglobint alkotó, α- és β-globin molekulák is elvesztették a fontosságukat - és mint az gondolom már nem annyira meglepő, az őket kódoló gének is "fosszilizálódtak".

3.) Az ember és emberszabású majmok trikromatikus látása az élővilág teljes egészében nem, de az emlősök közt annál inkább különlegesnek számít. Mégpedig azért, mert az evolúciójuk hajnalán az emlősök (feltehetőleg az éjszakai életmódhoz való alkalmazkodás során) elvesztették több opszin génjüket is, s így aztán egy kutya vagy egy egér csak dikromatikus látásra képes (vagyis az általa érzékelt színskála csak vörösből és kékből "keveredik" ki).

Az emberszabású majmok kialakulása közben az egyik megmaradt opszin-gén duplikációja , majd változása következtében, kialakul egy zöld fényt is érzékelő opszin, így aztán mi a színskála lényegesen szélesebb spektrumával barátkozhatunk életünk során.

Ugyanakkor nem biztos, hogy az ebből a szempontból kevésbé "szerencsés" emlősök sokkal kevesebb információval rendelkeznek a világról: hiszen velünk ellentétben lényegesen jobb a szaglásuk. Illetve talán az a helyesebb, ha azt mondom, hogy a mienk lényegesen rosszabb: mert míg ugyanúgy kb. 1000 szag-receptor gént hordozunk a genomunkban, mint egy eb, a mi esetünkben ezek több mint fele pszeudogén, míg négylábú barátaink esetében ez az arány kevesebb mint 20%.

A két jelenség (trikromatikus látás kialakulása ill. szagreceptor-gének elsatnyulása) minden valószínűség szerint összefügg. A jobb látás kicsit fölöslegessé tette a hatalmas szagreceptor repetoárt, és így abból egy-két gén elvesztése nem érintette nagyon súlyosan az emberszabású őst, aki amúgy szín alapján is ki tudta már szúrni az érett gyümölcsöt.

Persze lehetünk szkeptikusak (sosem árt ;-)), és felvethetjük, hogy a két jelenség együttes megjelenése még nem kell ok-okozati viszonyt feltételezzen. Ennek a megvizsgálására az újvilági majmokhoz fordulhatunk: ezek többsége dikromatikus látással rendelkezik, egyetlen, annál árulkodóbb kivétellel, ez pedig a bőgőmajom (howler monkey). A bőgőmajmoknak ugyanis szintén trikromatikus látáshoz van szerencséjük, és amikor "belenéztek" a szagreceptoraikba, az derült ki, hogy azok lényegesen nagyobb százaléka működésképtelen, mint a közeli rokonaikban. Vagyis úgy tűnik, hogy többről van szó egyszerű egybeesésnél: az éles látás kiváltja az éles szaglást - mármint egy egy főemlős hétköznapjaiban.

4.) Az emlős (és így természetesen emberi) embriók érdekes tulajdonsága, hogy korai fázisukban egy-egy jellegzetes szikzacskóhoz kapcsolódnak (lásd mellékelt ábra jobboldali panelje). Ez a szerv igen fontos, hiszen a falaiban futó erekben zajlik az embrionális vérképződés első hulláma, ugyanakkor nem lehet nem észrevenni, hogy ez mégiscsak egy üres zsák.

Evolúciósan nézve ez messze nem volt mindig így, elég egy hüllő, vagy egy csirke embrióra (bal oldali panel) vetni egy pillantást: a tojással szaporodó fajokban a szikzacskóban a szikanyag található (na vajon honnan jött a neve ... ;-)), magyarán a tojás sárgája. Ez az a tápanyag, amiből az embrió fedezi kezdeti energiaszükségletét és lezavarja azt a rengeteg sejtosztódást, amelyek végén egy kis csirke bújhat ki a tojásból. Az emlősök, különösen a méhlepényesek és kisebb mértékben az erszényesek is, azonban új trükkökkel álltak elő. Ezek egyike a placenta, vagyis a méhlepény, amelyen keresztül az embrió kezdeti fejlődése során közvetlenül a szülő szervezetéből juthat a táplálékhoz, a másik pedig az anyatej, ami születés után lesz hosszabb ideig az elsődleges élelemforrás. És bár ezek elsődlegesen nem a szikanyag kiváltására "jöttek létre", hosszabb távon mégis ehhez vezettek.

A szikanyag fölöslegessé válása azzal is járt, hogy a szikanyagot kódoló ún. vitellogenin gének (VIT) - amelyekből az emlősök és madarak ill. hüllők közös ősében három is volt - lassanként pszeudogénekké váltak. Érdekes módon a folyamat viszonylag lassan ment végbe, olyannyira hogy minimum egy-két gén inaktiválódására a különböző emlős vonalakban (erszényes vs. méhlepényes), azok szétválása után párhuzamosan került sor.

Nade, hopp, szemérmesen hallgattam eddig a legkülönlegesebb emlősökről, a tojással szaporodó kloákásokról, ahova a mindenki kedvence kacsacsőrű emlős is tartozik. Ha a méhlepény léte váltotta ki a szikanyagot (ill. a VIT gének működőképességét), akkor mi is a helyzet velük?

Nos ez esetben, talán nem meglepő módon, az egyik VIT gén még minden jel szerint működőképes. Így aztán, bár a gén két társa mára már csak a "díszként" ül a genomban, annyi szikanyagot még képes az anya állat termelni, hogy a utódjait fejlődésük kezdeti szakaszán túllendítse. Aztán pedig itt is jöhet a már említett anyatej.

(Az illusztrációként felhasznált képek innen származnak: Nikon, Freshpics, Wikipedia.)


Brawand D, Wahli W, Kaessmann H (2008) Loss of Egg Yolk Genes in Mammals and the Origin of Lactation and Placentation. PLoS Biol 6(3): e63 doi:10.1371/journal.pbio.0060063
Deméré TA, McGowen MR, Berta A, Gatesy J (2008) Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 57(1): 15-37.
Near TJ, Parker SK, Detrich HW 3rd. (2006) A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes. Mol Biol Evol 23(11): 2008-2016. doi:10.1093/molbev/msl071
Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11(5): 685-702.
Gilad Y, Wiebe V, Przeworski M, Lancet D, Pääbo S (2004) Loss of Olfactory Receptor Genes Coincides with the Acquisition of Full Trichromatic Vision in Primates. PLoS Biol 2(1): e5. doi:10.1371/journal.pbio.0020005

8 Tovább

Beware of the Beleiver

Asszem kétégtelen, hogy ez eddig az év viral videója. Még elég megosztottak a kedélyek, hogy az "Expelled" című, egy átlagos Harun Yahya hakninál csak hangyányit jobb kreacionista próbálkozás PR-jára készült, vagy pont hogy nem. Mindenesetre, a téma elég komoly ismeretét igényli, hogy a videó minden apró észletét értékelhessük: a "főszereplő" Dawkins, PZ Myers (!oktopuszos sapkával! ;-))), Sam Harris, Dan Dennett, Christopher Hitchens és Eugenie Scott mellett, a háttér animációk kronológiailag lefedik az evolucionista-kreacionista vita főbb állomásait, Paley, Sam Wilberforce és Thomas Huxley, a Scopes perrel elhíresült Clarence Darrow és William Jennings Bryan egyaránt fel-fel tűnik egy-egy snitt erejéig.

3 Tovább

tg-cbmass-20121025

blogavatar

Phasellus lacinia porta ante, a mollis risus et. ac varius odio. Nunc at est massa. Integer nis gravida libero dui, eget cursus erat iaculis ut. Proin a nisi bibendum, bibendum purus id, ultrices nisi.

Utolsó kommentek